Tuesday, January 29, 2013

Swing Pressure House

I have an impractical idea that may have beneficial effects for our space program: A house in which there is no carbon dioxide whatsoever, and it's all shunted aside to a greenhouse. This both benefits the plants, and is a security system for pests and vegetable thieves. We start with an oxygen generator, a machine who's name is a bit of a misnomer. It doesn't chemically generate oxygen so much as concentrate oxygen in the air. We want the industrial type, because it's cheaper, has higher airflow, and makes fewer assumptions about the air flow stream. This is used to pressurize an airtight house to 1.1 atmospheres. The higher pressure is to ensure that if any leaks do develop, the air flows out, not in.
Next, for dealing with the exhaled breath of the house's occupants, we have an airflow system that takes air from the house, and bubbles it through a hydroxide. All metal hydroxides react with carbon dioxide to form carbonates, which filters the carbon out of the air. Calcium hydroxide would be my primary choice, as this produces heat when synthesized, and is easily cleaned due to calcium carbonate being insoluble in water. You could even check visually to see when a hydroxide sample is worn down and needs replacement. Unfortunately, the synthesis of calcium hydroxide is more complex than sodium hydroxide, which can be produced by electrolyzing salt water. Enormous vats of hydroxides keep the air carbon free.
Over at the greenhouse, the metal carbonates produced by the air filtration system are bought to a lime kiln or vat of strong acid. The carbon becomes liberated from the metal, and spews forth throughout the greenhouse. This suits the plants fine, as the original earth's atmosphere was something like 30% carbon dioxide. As far as plants are concerned, modern earth is polluted all to hell with oxygen, which they produce as waste.
I wanted to make this a closed cyclical system, in which the greenhouse reset the conditions of the house, and vice versa. This would be necessary in space, where the gathering of additional materials is not possible. In space, if you did not bring with you, then you do not have it. I would recommend a calcium based system for this:
CaCO3 + HCl → CaCl2 + CO2 + H2O
H2O + electricity → H2 + O2
CaCl2 → Ca + Cl2 H2 + Cl2 → HCl
Ca + O2 → CaO
CaO + H2 → Ca(OH)2
Ca(OH)2 + CO2 → CaCO3
On earth, a sodium based system is probably more practical: NaCl + H2O → NaOH + Cl
NaOH + CO2 → NaCO3 + H2O
CH3COOH + NaCO3 → CH3CO2Na

You now have an endless supply of hand warmer and poison gas.

Wednesday, January 9, 2013

Windshield Wire

There's a small icon on my car's dashboard.

When I push this button, current runs through tiny wires in my car's back window, and the resistance to this heats the window up. The head makes water deposited on this window by condensation evaporate, making the window clear for me to see out of. This is legally mandated for my car, as lawmakers think it a reasonable expectation that I be able to see what the hell is going on behind me when I drive.

The windshield, though, or front window, is defogged by blowing hot air from the engine. This is partially because the engine is right below it, and this is a ready source of heat, but mostly because the little wires would be way too prominent at that close a distance. The back window is six feet away from me, the driver. The little black lines are just too tiny to notice at that distance. The windshield, though, is merely inches away. To put little wires here would mean looking a little black lines constantly while I drive.

Let us suppose, though, that I didn't mind the wires, but needed some sort of automated system, so I don't have to bother with the button. I think I would resolve this by materials science.

I would need to produce a material that conducted electricity, but developed greater resistance under low temperatures. In temperate environments, where the window does not fog up, the wires conduct efficiently, and very little heat is produced. However, in colder environments where my own body heat makes a temperature gradient that encourages condensation, the resistance rises considerably, producing heat, and evaporating this fog before it can really get started.

Nah, there's defoggers set up the way they are for a reason.

However, if I were redesigning cars, I would make each of its vents independent. The front vents for blowing air at my face, the lower vents that blow air at my feet, and the vents that blow air at the outer windshield would each have their own dial for temperature and amount of air. As I turn the amount of air dials up, a fan in the vent is given more voltage, making it rotate faster and push more air. As I turn the temperature dial up, more of the air is routed past the radiator.

Friday, December 28, 2012

Operation Frankenweenie

Let's say that tomorrow, a heartbroken billionaire comes to me with a desperate problem. His beloved elephant, Jumbo, died just ten minutes ago. The massive team of the world's best biotechnology experts tell him that death is permanent, and he should accept this, but he'd given anything to get his elephant back. Sane science has denied him, so now he's turned to me to try something psychotic. And of course, I agree.

The process would be upsetting to watch, being a surgery and all, so we tell him to do his job, while I and his team do ours. I tell the biomedical team to separate Jumbo's various organ systems, and put them into vats of saline to halt the decay. I then review the situation.

All death is brain death primarily. Your body fails to provide the glucose and oxygen that your neurons need, which makes them fail, the way that a hammer strike to the motherboard takes out a computer. If my heart were to abruptly fail while I was in a hospital, the doctors could save my life by immediately hooking me to a cardiopulmonary bypass machine, and find some sort of replacement heart, such as one donated by a person who is too dead to need it anymore, or perhaps a mechanical replacement. Same for my lungs. My digestive system could be replaced by a nutrient IV drip, and my kidneys and bladder by dialysis. However, without a working brain, that's pretty much the end of me. So to fix the whole death situation, I'm going to repair Jumbo's brain. First, a review of the medical team's technology.

I order a cardiopulmonary bypass system and a saline-and-glucose IV for each of the organ systems, and a virtual reality system to keep the brain sane as I repair it. I then use the medical team's deep scanners to record the neuron patterns of which cell are connected to which cell, which is written to the massive RAID array. This takes countless exabytes of data, but I'm not footing the bill on this.

Next, a sample of Jumbo's DNA is taken from his muscle cells, and used to make a huge vat of stem cells. I write a program to check the brain records in the array, and one by one replace the dead neuron with a stem cell. The cell is influenced into becoming a neuron cell, and the program then tries to force it to make the connections that it's predecessor had. This automated process is replacing a hundred thousand cells per second, but will still take several months to complete. I have the VR system keep this growing brain in a delta-wave state -- deep sleep. The IV system is feeding it the nutrition that it needs to survive, the cardiopulmonary bypass system is keeping blood circulating, and the dialysis machine is purifying the waste. When the process is done, a disembodied Jumbo brain will be floating in the tank.

However, since our billionaire donor expects to be able to interact with his pet outside of VR, we will now have to repair the rest of the body as well. This is somewhat simpler. We dissolve the cells from each of Jumbo's organs, then leave the extracellular matrix in a vat of stem cells. These quickly repair into organs, which we keep alive in vats with a cardiopulmonary bypass and a dialysis machine keeping them individually alive and functional. It is here that I learn Jumbo's cause of death -- his heart developed a clot, starving the rest of his body of food and oxygen. Jumbo had died of a heart attack.

I have to periodically monitor the brain's progress. Three months in, the brain is 75% repaired. I adjust the VR system to move from delta, up to gamma, to nearly beta, then back down again, just as in real sleep. Jumbo's brain will now "dream," keeping it healthy.

We then work to recombine Jumbo's organs and muscle systems, minus the skull. This allows us to simplify the life support system, and sell off about half of the equipment. It will also give Jumbo a head start on healing, and at this point he's stitched together like Dr. Frankeinstein's monster. I can now report to our sponsor that Jumbo is alive, mostly. Cold hand of death, release him! However, he will need another six months before he can play with his master again. Our billionaire is tearfully grateful. A month later, I allow the VR system to bring the brain periodically to full beta, allowing Jumbo to "wake." I have programmed a virtual environment of a grassy field with fruit trees, and monitor how Jumbo navigates this environment. Mostly, I want to see that this experience has not rendered him insane or traumatized. So far so good.

Three months later, we need to reattach the brain. We slip the brain into the skull while still in the tank, then I have the surgeons reattach the skull to the rest of the elephant. The blood vessels and nerves are very carefully moved from the cardiopulmonary bypass and other life support machines to the elephant body.

Jumbo is now quite obviously alive, but paralyzed and sore. We keep up a medical treatment of intervenous feeding, and nerve repairing blue dye. It is now for the first time in seven months that our sponsor has seen his pet. At this time, I've done all I can do.

Five months later, I get a postcard from our sponsor. He's playing with Jumbo, who is now biologically a young adult. Jumbo has a renewed vigor, and a zest for life that our sponsor finds deeply inspiring. The biology team has him on a treatment for his blood condition, and Jumbo will easily outlive his master this time around. And I? My research paper on reversing death itself has led to a nomination for the Nobel prize in medicine. I must share credit for this with the biomedical team, but honestly, I'd rather that they take all the credit. Fame is not for me when mad science is on the line.

Friday, December 14, 2012

Bird Bot

Once upon a time, there was a bird-owning engineer with a problem: his African Grey Parrot would, like most of their species, become very upset when away from what they considered the center of action in an area, and would start hooting and screeching for attention. His first solution was a noise-detecting squirt gun. At first this worked, and the spray of water would interrupt the screaming. Then the bird figured out how it worked and started intentionally triggering it for a quick bathtime, which parrots love. (African Greys have the intellectual capacity of a 3 year old on average, but have some skills that human children don't figure out until they're 12.)

It's not safe to let a parrot walk around unattended, one because they are immensely small and light and they will die if you step on them. (A medium sized parrot such as an African Grey weighs about one pound. The heaviest known parrot weighs 8 pounds.) Another reason is that they can chew on things on the floor, or even the floor itself, causing immense property damage. So his next idea was one that allowed the bird to travel around safely: a small motorized bird-controlled cart. The bird stands on a small perch, and pushes around a metal bar to control the cart. This way the bird could follow the humans of the house around without ever being underfoot or in the path of tempting electrical chords, rugs, or floor tiles.

The joystick component appeared to be one of the surprisingly larger engineering challenges. A parrot's beak evolved to crush nuts, is about a strong as a human with a pair of pliers, and they immensely enjoy ripping things to shreds with it. The top part can punch through wood like an awl, and the larger parrots can even destroy a steel cage. The joystick had to be designed in such a way to resist puncture, pressure, and had to endure being pulled on, all of which the bird almost assuredly tried to do.

The most challenging thing though, is that our enterprising engineer did not want to have to put this cart away every day when it's time for the bird to go to bed. The cart is designed with a computerized system that can find its way back to the charger, and slowly scoot the cart into position where it gets plugged in and charged back up for another day of bird-moving. This does so with computer-vision, which is remarkably difficult to do successfully. Also, it begins to do this the moment the parrot leaves the cart.

If I were this engineer, I would look into having this cart mass-produced.

Wednesday, November 21, 2012

Farm Ship

Oceans cover some 75% of the earth's surface. Most of the oceans are, in biological terms, a vast desert. The nutrition for plant growth to start off the biological cycles has for the most part sunk to the bottom. Near the shores, though the opposite problem happens, as farm runoff arrives in the ocean, triggering a vast bloom of algae, which quickly turns into a suffocating oxygenless muck. The sun shines upon the ocean making rain, some of which powers the land-based photosynthesis with water, but most of which falls back into the ocean again. The availability of sun and water suddenly gave me an interesting idea. We take a discarded cargo ship, and convert the large surface area to a vast farm. Equipment is installed beneath the ship to suck up water and desalinate it, and have it bubble up beneath the dirt at the surface. The ship sails around the world, slowly growing tons and tons of food. Periodically the ship arrives at harbors where food prices are highest to sell the food, buy fertilizer, and change crews. (The laboring farmers would be mostly employees, and this system could hopefully offer some nice wages, enough for a plane ride back home every so often.)

If there's any runoff from this, there would be a temporary bloom running behind the ship's wake, but not severe enough to cause any sort of red tide or harmful eutrophication, and this causes a temporary fish spawning point. The benefits of ocean feeding occur provided the ship remains in motion at all times.

In addition, the ship could remain in constant spring or summer by constantly sailing back and forth between the northern and southern hemispheres, maintaining beneficial conditions for the crops at all times.

This would take on the large scale a considerable amount of energy. For best results, this should be done after fusion power is available, which would allow for the boat to operate pollution free. In practice, though, the boats would probably be coal fired, or diesel driven, with all the problems that attend that.

For feeding an increasingly hungry world, this might make at least a small difference.

Sunday, November 11, 2012

Technology Sociology

Yesterday, during my work break, I learned of a cool thing, and a tragic thing. The cool thing is that a young father, wanting to share his love of the Zelda series of video games with his daughter, has been reading the text for her. As the daughter would prefer that her avatar in video games be female, he has been changing the references to the hero, Link, being a boy, to being a girl. To preserve this once she does learn to read, he hex edited the rom and re-burned it with the references all changed. Some awkwardness ensued, as all text had to remain the exact same length, lest all pointers thereafter become wrong, corrupting the entire ROM. Link is ambiguous looking enough so that this works out. At first, the comments that the father received were admiring, especially from young women who wished that they could have enjoyed media in this way. However, after the blog entry had been up for about a day, suddenly a storm of people came in infuriated that he altered the original game, feeling that he was somehow ruining it. A veritable torrent of rants, whines, and complaints that he was infringing Nintendo's copyright ensued. Perhaps these people were trolling, or perhaps they felt that any modification of their favorite thing detracted from it, even hypothetically, but it did make me wonder one thing about the world of technology. Is the world of video games and computers sexist? I do admit that there were only four people in my graduated class who were female...and none of them graduated as a computer scientist. All of them switched to math or other related majors. None of them really explained why, but when I look around, I suspect it's the culture. Computer science has been so male dominated for so long that a fraternity-esque "dudebro" culture that's as disconcerting for an average women as a knitting group consisting primarily of bitterly divorced mothers would be for an average man dominates the scene.

Some pundits posit that this doesn't really matter, but I think it does. Many of the most important pioneers in computer science have been women, such as the very first programmer ever, Ada Lovelace, or the inventor of higher level languages, Admiral Hopper. Other fields also had problems of a sexist culture, such as medicine, and they resolved it by treating sexist behavior as completely unacceptable. I see no reason why computer science can't do the same.

Wednesday, October 31, 2012

Uranus

Our seventh planet from the sun has been known about since ancient times, but most of the ancients thought it was a star, as only a dim point of light is visible from earth.    In the 1970s, we got our first good look at it, and what we saw was a dull green-grey sphere.   However, this planet has a greater significance.

Uranus is one of the odder planets in the solar system.   It has a much greater axis of rotation, being either 96 or 106 degrees, depending on which of the two definitions you are using.   If you are basing it on the way the planet rotates, and assuming the rightwards based rotation  is the north pole, then it's 106 degrees.  It's the coldest planet in the solar system.  There is one planet further way, Neptune, and the numerous dwarf planets beyond like Pluto, but these have additional internal heat from radioactivity that warm them up.

But soon enough on geological time, Uranus will have to become our home.   In one billion years, our home star will become a red giant star.   The innermost planets will be incinerated, and if we can't move the earth in time, it will be charred into a lifeless glowing rock.   And we too would be baked if we can't move the earth in time.

When the red giant phase is complete, the habitable zone, currently in our orbit, will have moved to the Uranus orbit.   I'd like to believe that we'll move the earth into being a new moon, but in all practicality, we'll probably just abandon the earth and rebuild on the various moons that are already there.

We'll need energy, in greater quantities than I can readily imagine, and technology that I can't even dream of, but we have a billion years to do it.

Related Posts Plugin for WordPress, Blogger...